Several energetic MOFs based on the N-rich energetic materials and alkali metals: towards high detonation performances and good stabilities†
Abstract
In recent years, energetic metal–organic frameworks (E-MOFs) have attracted considerable attention as a pivotal strategy for reconciling the inherent trade-off between energy and sensitivity in energetic materials, thereby enhancing their practical applications. This study involves the design and synthesis of a series of novel E-MOFs derived from the N-rich energetic material ATDT and various alkali metals, ranging from ATDT-Li to ATDT-Cs. Research findings indicate that as atomic mass increases, detonation performance initially improves before declining, with ATDT-Na exhibiting the highest performance, surpassing RDX with a detonation velocity of 8897 m s−1 and mechanical stability over 40 J. Furthermore, the results demonstrate that the factors of aromaticity, coordination interactions, and non-covalent interactions significantly contribute to the formation of stable E-MOFs, offering valuable insights for the future development of high-performance E-MOFs.