Issue 1, 2025

How does the polymer type affect the rate of water evaporation from polymer solutions?

Abstract

Drying of aqueous polymer solutions is widely used to form polymer films. However, we do not fully understand how concentrated polymer near the drying interfaces decreases the rate of water evaporation. In addition, we do not know how the evaporation kinetics varies when we use different polymers. To understand these topics, we examined drying of polymer solutions with three different polymers, poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone), and poly(ethylene glycol) in unidirectional drying cells. In each case, the water evaporation rate (J) decreased to 1/10 of the initial rate during evaporation. J−1 was proportional to the amount of polymer transported to the drying interface during the drying time. The slope is defined as resistance factor A and the PVA solutions had larger A values than the other polymers, indicating that J decreased more noticeably in the PVA solutions. The molecular weights of the polymers did not explain A. Concentration profiles of polymers near the drying interfaces were quantified in situ with an optical microscope by exploiting differential interference contrast, from which we estimated the diffusion constants (Ds) of the polymers in the drying solutions. We found that A was negatively correlated with D. This result clearly indicates that the diffusivity and accumulation of dissolved polymer molecules near the drying interface governs the overall drying kinetics of their solutions.

Graphical abstract: How does the polymer type affect the rate of water evaporation from polymer solutions?

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2024
Accepted
18 Nov 2024
First published
19 Nov 2024

Phys. Chem. Chem. Phys., 2025,27, 283-290

How does the polymer type affect the rate of water evaporation from polymer solutions?

M. Tanaka and S. Inasawa, Phys. Chem. Chem. Phys., 2025, 27, 283 DOI: 10.1039/D4CP03457K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements