An orbital-overlap complement to σ-hole electrostatic potentials†
Abstract
A σ-hole is an electron-deficient region of positive electrostatic potential (ESP) opposite from a half-filled p orbital involved in forming a covalent bond. The σ-hole concept helps rationalize directional noncovalent interactions, known as σ-hole bonds, between covalently bonded group V–VII atoms and electron-pair donors. The magnitude and orientation of σ-holes are correlated with the strength and geometry of halogen bonds. However, ESP computed for isolated σ-holes are not always predictive of interaction energies. For example, the σ-holes of isolated CHFBr2 and isolated CH2FI have identical ESP on the molecule surface, but halogen bonds to these molecules generally have different strengths. Here we show that the compact/diffuse nature of the orbitals involved plays an important role. Our orbital overlap distance quantifies the compact/diffuse nature of the “test orbital” that best overlaps with a systems orbitals at each point. The overlap distance captures the response properties of σ-holes: diffuse σ-holes with large overlap distance are typically “softer” and more polarizable. This aids visualization and interpretation. A linear fit to overlap distance and ESP is predictive of the halogen bond strengths of CH3X and CF3X (X = Cl, Br and I). We suggest that the overlap distance will be a useful partner to ESP for characterizing σ-holes.