Enhanced carrier mobility in strain-engineered PdAs2 monolayer boosted by suppressing interband scattering
Abstract
Strain engineering is an effective method to modulate the electronic properties of two-dimensional materials. In this study, we theoretically studied the carrier mobility of the PdAs2 monolayer under different biaxial tensile strains based on the state-of-the-art electron–phonon coupling theory. We observe that the carrier mobility is largely enhanced for both n-type and p-type PdAs2 monolayers. The electron mobility experiences a rapid increase under tensile strain over 2% and can reach 670 cm2 V−1 s−1 under 4% strain, which is higher than common 2D semiconductors. The rapid increase of electron mobility originates from the ordering change of the conduction bands and the suppressed interband scattering. Our study highlights the role of electron–phonon coupling in the electron transport and provides new insights into the optimization of carrier mobility.