Sulfonated reduced graphene oxide encapsulated perovskite-type ErCoFe oxide nanoparticles for efficient electrochemical water oxidation†
Abstract
Perovskite oxides play a vital role as electrocatalysts in water oxidation due to their flexible and unique electronic structures. In this work, Er-based perovskites ErCo1−xFexO3−δ (x = 0.0, 0.1, 0.3, 0.5, 0.7, and 1.0) denoted as EC, ECF-0.9, ECF-0.7, ECF-0.5, ECF-0.3, and EF, respectively, are synthesized by the sol–gel method. Then, ECF-0.9 is supported on sulfonated reduced graphene oxide (S-rGO) by a hydrothermal method, with weight ratios of 1 : 1 and 3 : 1 of ECF/0.9 to S-rGO (shown as ECF-0.9/S-rGO(50%) and ECF-0.9/S-rGO(75%), respectively). The structural properties and the morphology of the synthesized materials are studied using a series of different techniques. The prepared perovskites are then used as electrode materials for electrochemical water oxidation. ECF-0.9 reveals better activity than pure EF, EC, and other perovskite oxides in terms of overpotential, Tafel slope, electrochemically active surface area (ECSA), and charge transfer resistance (Rct) values. Interestingly, when the optimized perovskite oxide catalyst ECF-0.9 is decorated on S-rGO sheets, the water oxidation activity is significantly improved. ECF-0.9/S-rGO(75%) exhibits superior activity for water oxidation with an overpotential of 290 mV@10 mA cm−2 and a Tafel slope of 41 mV dec−1. Finally, overall water splitting with ECF-0.9/S-rGO(75%) as the anode electrode shows a low electrolysis voltage of 1.60 V, alongside excellent stability for 20 h.