Issue 5, 2025

Giant {Mo132} polyoxometalate isolated with diverse organic cations: a systematic proton conductivity study

Abstract

The development of efficient and stable proton conductors is a pivotal area of research due to their transformative potential in alternative energy technologies. Recently, there has been a surge of interest in synthesizing proton conductors based on polyoxometalate (POM) materials, attributed to their highly negatively charged and oxygen-rich surfaces. In this study, we report on a highly water-soluble giant POM, (NH4)42[Mo132O372(CH3COO)30(H2O)72ca.300H2ca.10CH3COONH4 (designated as {Mo132}), which was rendered insoluble in water by exchanging its ammonium cations with larger organic cations, specifically histidinium, pyridinium, bipyridinium, and methyl viologen, resulting in His-Mo132, Py-Mo132, Bpy-Mo132 and MV-Mo132, respectively. These ion-exchanged compounds were thoroughly characterized through comprehensive spectral analyses, elemental analyses and microscopic studies. The substitution with organic cations containing nitrogen centres not only rendered {Mo132} insoluble, but also increased the number of proton hopping sites, thereby enhancing proton transport. Consequently, His-Mo132, Py-Mo132, Bpy-Mo132 and MV-Mo132 demonstrated impressive proton conductivity. Among these, Py-Mo132 stood out with a proton conductivity of 1.07 × 10−2 S cm−1 under 98% relative humidity at 80 °C. All four compounds exhibited proton conduction predominantly via the Grotthuss mechanism. Furthermore, stability assessments of these Mo132-based proton conductors were conducted under operational conditions to evaluate their performance in practical applications.

Graphical abstract: Giant {Mo132} polyoxometalate isolated with diverse organic cations: a systematic proton conductivity study

Supplementary files

Article information

Article type
Paper
Submitted
09 Oct 2024
Accepted
09 Dec 2024
First published
13 Dec 2024

Dalton Trans., 2025,54, 2166-2176

Giant {Mo132} polyoxometalate isolated with diverse organic cations: a systematic proton conductivity study

P. M. Unnikrishnan, O. Basu, R. Nasani and S. K. Das, Dalton Trans., 2025, 54, 2166 DOI: 10.1039/D4DT02834A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements