Issue 14, 2025

Phototherapeutic activity of polypyridyl ruthenium(ii) complexes through synergistic action of nitric oxide and singlet oxygen

Abstract

In recent years, photodynamic therapy (PDT) and gas therapy (GT) have emerged as research hotspots due to their excellent cancer treatment efficacy. By combining the advantages of both, the simultaneous and controllable release of reactive oxygen species (ROS) and nitric oxide (NO) has become a possibility. This paper describes the design of two Ru(II) complexes, [Ru(bpy)2(NFIP)](PF6)2 (Ru1, bpy = 2,2′-bipyridine, NFIP = 4-nitro-3-trifluoromethylaniline-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ru(phen)2(NFIP)](PF6)2 (Ru2, phen = 1,10-phenanthroline), through the integration of the polypyridyl ruthenium structure and a photoresponsive NO donor. The structures and purity of the complexes were confirmed by several methods, including 1H NMR, mass spectrometry, elemental analysis, high performance liquid chromatography (HPLC) and UV-Vis absorption spectra. Both complexes were demonstrated to efficiently generate singlet oxygen (1O2) (ΦΔ = 0.40 and 0.44 in phosphate buffered saline (PBS) for Ru1 and Ru2, respectively) and release NO under visible light irradiation. Upon light exposure, Ru2 exhibited significant phototoxicity against human cervical cancer HeLa cells. In vitro experiments indicated that Ru2 elevated the levels of ROS and NO in HeLa cells when exposed to light, resulting in mitochondrial impairment and caspase-mediated cell death. Overall, Ru2 proves to be a potent phototherapeutic compound, capable of producing ROS and NO, thus providing precision in cancer phototherapy.

Graphical abstract: Phototherapeutic activity of polypyridyl ruthenium(ii) complexes through synergistic action of nitric oxide and singlet oxygen

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2025
Accepted
06 Mar 2025
First published
06 Mar 2025

Dalton Trans., 2025,54, 5753-5763

Phototherapeutic activity of polypyridyl ruthenium(II) complexes through synergistic action of nitric oxide and singlet oxygen

J. Dong, B. Chen, S. Jiang, X. Wu, W. Feng, J. Li, Z. Pan, Y. Liu and L. He, Dalton Trans., 2025, 54, 5753 DOI: 10.1039/D5DT00038F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements