Issue 2, 2025

Assessing conditions favoring the survival of African dust-borne microorganisms during long-range transport across the tropical Atlantic

Abstract

Forward trajectories of trans-Atlantic dust plumes were studied over a 14 year period (N ∼500 000) with a focus on ambient meteorological conditions affecting the survivability of the microorganisms co-transported with dust. Major dust transport patterns that emerged from the ensemble of trajectories closely follow the established seasonal transport patterns of African dust over the tropical Atlantic Ocean: summer transport (June–August) reaching the southeastern US and the Caribbean at an average altitude of 1600 m and winter transport (December–February) reaching the Amazon basin at around 660 m. Summer trajectories take on average 270 hours to cross the Atlantic, while winter ones take 239 hours. A higher diversity is expected in microorganisms co-transported to the Amazon due to the higher diversity in contributing dust emission sources. Analysis of meteorological conditions along the trajectories indicate more favorable conditions for microorganism survival reaching the Amazon. During the winter and for Amazon trajectories, lower mean solar radiation flux of 294 W m−2 and mean relative humidity levels at around 61% are observed as compared to averages of 370 W m−2 solar radiation and 45% relative humidity for summer trajectories entering the Caribbean basin. Nevertheless, 14% of winter trajectories (4664 out of 32 352) reaching the Amazon basin face intense precipitation, potentially removing microorganisms, as compared to 8% of trajectories (2540 out of 31 826) entering the Caribbean basin during the summer. These findings have important implications for the survivability of microorganisms in trans-Atlantic dust plumes and their potential for major incursion events at receptor regions.

Graphical abstract: Assessing conditions favoring the survival of African dust-borne microorganisms during long-range transport across the tropical Atlantic

Associated articles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Jul 2024
Accepted
20 Dec 2024
First published
23 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2025,5, 220-241

Assessing conditions favoring the survival of African dust-borne microorganisms during long-range transport across the tropical Atlantic

A. H. Mardi, M. R. A. Hilario, R. Hanlon, C. González Martín, D. Schmale, A. Sorooshian and H. Foroutan, Environ. Sci.: Atmos., 2025, 5, 220 DOI: 10.1039/D4EA00093E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements