Issue 4, 2025

Comment on “Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control” by H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P. Huang, J. Lee, I. S. Cho and X. Zheng, Energy Environ. Sci., 2018, 11, 1299

Abstract

Han et al. claimed that a predominantly (001)-oriented BiVO4 photoanode was successfully fabricated on fluorine-doped SnO2 (FTO) polycrystals through microscale epitaxy by employing laser ablation deposition, leading to a staggering sixteen-fold increase in the efficiency of the BiVO4 photoanode for solar water oxidation compared to a spin-coated BiVO4 photoanode with random orientation. However, the assessment of crystallographic texture was inaccurately conducted through electron backscatter diffraction observations, and was then erroneously confirmed by the θ–2θ scan and pole figures of X-ray diffraction. Contrary to their assertions, our reanalysis of the presented data uncovers that the BiVO4 photoanode likely contains merely ∼6.2% of (001)-oriented grains, with the (011/101)-oriented grains constituting ∼2.9% and the (024/204)-oriented grains comprising ∼3.9% of the overall composition. The remaining grains exhibit a nearly random orientation. The existence of a mere ∼6.2% (001) texture does not seem to conclusively correspond with the sixteen-fold increase in the efficiency of the BiVO4 photoanode in solar water oxidation. The impact of various other microstructural variations (such as porosity and grain integrity) resulting from the diverse deposition techniques on the efficacy of solar water splitting necessitates thoughtful consideration. Moreover, the apparent scarcity of (101)-oriented grains in the underlying FTO layer raises doubts on its capability to facilitate (001)-textured growth of BiVO4 through the alleged microscale epitaxy, as substantial evidence substantiating this assertion is lacking.

Graphical abstract: Comment on “Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control” by H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P. Huang, J. Lee, I. S. Cho and X. Zheng, Energy Environ. Sci., 2018, 11, 1299

Associated articles

Article information

Article type
Comment
Submitted
15 Jun 2024
Accepted
03 Jan 2025
First published
21 Jan 2025

Energy Environ. Sci., 2025,18, 1992-2002

Comment on “Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control” by H. S. Han, S. Shin, D. H. Kim, I. J. Park, J. S. Kim, P. Huang, J. Lee, I. S. Cho and X. Zheng, Energy Environ. Sci., 2018, 11, 1299

C. Lu and X. Wang, Energy Environ. Sci., 2025, 18, 1992 DOI: 10.1039/D4EE02619E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements