Issue 4, 2025

Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers

Abstract

All-perovskite tandem solar cells (TSCs) hold the promise of surpassing the efficiency limits of single-junction solar cells. However, enhancing TSC efficiency faces the challenge of significant open-circuit voltage (VOC) loss in the wide-bandgap (WBG) subcell. In this study, we employed a bromine-substitution strategy to develop a novel self-assembled monolayer, (4-(3,11-dibromo-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (DCB-Br-2), as the hole-transporting layer for 1.79-eV WBG perovskite solar cells. The bromine in DCB-Br-2 donates a pair of non-bonded electrons to uncoordinated Pb2+ ions or halide vacancies, enhancing interaction with the perovskite layer and suppressing interfacial non-radiative recombination. DCB-Br-2 also adjusts energy level alignment, facilitating fast hole extraction. The optimized WBG solar cell achieved a maximum VOC of 1.37 V, surpassing 90% of the Shockley–Queisser limit. Combined with a 1.25-eV narrow-bandgap subcell, this enabled a two-terminal all-perovskite TSC with a champion power conversion efficiency of 27.70%, advancing the development of high-performance tandem devices.

Graphical abstract: Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2024
Accepted
23 Dec 2024
First published
08 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Energy Environ. Sci., 2025,18, 1847-1855

Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers

Z. Wei, Q. Zhou, X. Niu, S. Liu, Z. Dong, H. Liang, J. Chen, Z. Shi, X. Wang, Z. Jia, X. Guo, R. Guo, X. Meng, Y. Wang, N. Li, Z. Xu, Z. Li, A. G. Aberle, X. Yin and Y. Hou, Energy Environ. Sci., 2025, 18, 1847 DOI: 10.1039/D4EE04029E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements