Issue 1, 2025

An introduction to machine learning tools for the analysis of microplastics in complex matrices

Abstract

As microplastic (MP) particles continue to spread globally, their pervasive presence is increasingly problematic. Analyzing MPs in matrices as varied as soil, river water, and biosolid fertilizers is critical, as these matrices directly impact the food sources of plants, animals, and humans. Current analytical methods for quantifying and identifying MPs are limited due to labor-intensive extraction processes and the time and effort required for counting and analysis. Recently, Machine Learning (ML) has been introduced to the analysis of MPs in complex matrices, significantly reducing the need for extensive extraction and increasing analysis speeds. This work aims to illuminate various ML techniques for new researchers entering this field. It highlights numerous examples in the application of these models, with a particular focus on spectroscopic techniques such as infrared and Raman spectroscopy; tools which are used to quantify and identify MPs in complex matrices. By demonstrating the effectiveness of these computer-based tools alongside the hands-on techniques currently used in the field, we are confident that these ML methodologies will soon become integral to all aspects of microplastic analysis in the environmental sciences.

Graphical abstract: An introduction to machine learning tools for the analysis of microplastics in complex matrices

Article information

Article type
Critical Review
Submitted
09 Oct 2024
Accepted
13 Nov 2024
First published
18 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2025,27, 10-23

An introduction to machine learning tools for the analysis of microplastics in complex matrices

B. R. Coleman, Environ. Sci.: Processes Impacts, 2025, 27, 10 DOI: 10.1039/D4EM00605D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements