Issue 2, 2025

Efficiency and mechanisms of combined persulfate and nanofiltration for the removal of typical perfluorinated compounds

Abstract

Perfluorinated compounds (PFCs) are a class of emerging pollutants that are commonly detected in surface water and pose significant risks to both the environment and public health. This study investigates a combined treatment method for removing perfluorooctanoic acid (PFOA), a prevalent PFC found in micro-polluted surface water. The method integrates nanoscale zero-valent iron (nFe)-activated persulfate (PS) pre-oxidation with conventional water treatment processes—coagulation, sedimentation, and sand filtration—combined with nanofiltration (NF). This study primarily aims to evaluate the efficiency of this combined process for PFOA removal and to elucidate the mechanisms underlying PS oxidation and NF separation. The treatment sequence, comprising nFe/PS pre-oxidation, conventional treatment, and NF, was strategically designed considering the specific roles of each process in PFOA removal. In the initial stage, nFe-activated PS generates sulfate radicals (SO4·) and hydroxyl radicals (OH·), which oxidize and degrade PFOA. The subsequent conventional treatment removes the majority of degradation byproducts and suspended solids. Finally, NF retains both PFOA and its oxidation products, thereby ensuring high removal efficiency. Experimental results indicate that an optimal PS dosage of 0.2 mM and an nFe-to-PS molar ratio of 1 : 1 achieved the maximum efficiency for PFOA removal. Among the tested sequences, “nFe/PS pre-oxidation + conventional treatment + NF” achieved the highest removal rate, exceeding 99%. Furthermore, this sequence resulted in the lowest surface potential of the NF membrane, which enhanced electrostatic interactions between the membrane and PFOA. This reduction in surface potential, combined with the formation of C–O bonds between PFOA and the NF membrane, further enhanced PFOA adsorption onto the membrane surface. The combined process of nFe/PS pre-oxidation, conventional treatment, and nanofiltration effectively removes PFOA from micro-polluted surface water, thereby contributing to improved drinking water safety.

Graphical abstract: Efficiency and mechanisms of combined persulfate and nanofiltration for the removal of typical perfluorinated compounds

Article information

Article type
Paper
Submitted
08 Oct 2024
Accepted
10 Dec 2024
First published
18 Dec 2024

Environ. Sci.: Water Res. Technol., 2025,11, 449-460

Efficiency and mechanisms of combined persulfate and nanofiltration for the removal of typical perfluorinated compounds

L. Sun, Y. Zhang, Z. Xi, R. Li and K. Zhang, Environ. Sci.: Water Res. Technol., 2025, 11, 449 DOI: 10.1039/D4EW00819G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements