Shedding light on the path to multifunctional task-specific supported ionic liquids with enhanced catalyst stability and activity†
Abstract
This study introduces an approach to developing catalytic systems using multifunctional Task-Specific Support Ionic Liquid-like Phases (TS-SILLPs). These TS-SILLPs leverage the unique properties of ionic liquids (ILs) while addressing traditional challenges such as high production costs and environmental impact. A small-focused library of multifunctional SILLPs can be prepared by employing click chemistry and solid-phase synthesis. The use of thiolactone chemistry and thiol–alkene click reactions facilitates a straightforward method for the post-functionalization of supported ILs, allowing precise customization of their properties for specific catalytic applications. Specifically, in the 1,3-dipolar copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions, our findings show that these SILLPs can be tuned not only to provide the catalytic species and to stabilize them, enhancing catalyst activity and selectivity, but also to reduce metal leaching, thus providing a greener, more efficient synthesis. Moreover, the incorporation of Rose Bengal as a photosensitizer within the SILLP framework aids in the regeneration of active copper species, demonstrating high stability and reusability of the catalytic system.