Issue 5, 2025

Efficient oxidative coupling of amines to imines under natural sunlight using a benzothiadiazole-based molecular photocatalyst

Abstract

Developing a ‘greener’ avenue for organic synthesis is a key challenge, which must focus on energy efficiency as well as sustainability. Harnessing solar energy to chemical energy is an efficient way to utilize renewable energy resources. Herein, we report a D–A-type (donor–acceptor-type) small organic molecular photocatalyst (SOMP) “Ph-BT-Ph” with benzothiadiazole as the primary photoactive unit for oxidative coupling of amines to synthesize imines. Photocatalyst Ph-BT-Ph is synthesized using a Suzuki–Miyaura coupling reaction and thoroughly characterized by 1H-NMR, HRMS, and cyclic voltammetry studies. Photoluminescence and lifetime studies of Ph-BT-Ph show a high excited state reduction potential (−1.37 V vs. Ag/AgCl) and longer lifetime (12.64 ns) which make it suitable for photocatalytic organic transformations. The photocatalytic activity of the catalyst has been evaluated on the direct oxidative coupling reaction of amines to synthesize imines in the presence of natural sunlight and O2 as a green oxidant. Catalyst Ph-BT-Ph exhibits excellent photocatalytic performance under optimal reaction conditions by converting >99% amine to imine with >98% selectivity within 2 hours. This high photocatalytic efficiency has been achieved by purging oxygen only for 2 minutes and without any mechanical energy input (no stirring). Quite a moderate amount of catalyst (0.13 mol%) has been employed which results in a high catalytic turnover frequency of 381 h−1. EPR spectroscopy and theoretical studies are performed to understand the reaction mechanism and to determine the active sites of the catalyst. The Ph-BT-Ph catalyst surpasses the photocatalytic efficiencies of many reported metal-free catalysts for oxidative coupling of amines. Such SOMPs, with easily tunable absorption range and well-defined energy-band positions, offer a new class of metal-free and photoactive catalysts for organic synthesis with outstanding performance under greener reaction conditions.

Graphical abstract: Efficient oxidative coupling of amines to imines under natural sunlight using a benzothiadiazole-based molecular photocatalyst

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Oct 2024
Accepted
28 Jan 2025
First published
29 Jan 2025
This article is Open Access
Creative Commons BY license

Mater. Adv., 2025,6, 1667-1678

Efficient oxidative coupling of amines to imines under natural sunlight using a benzothiadiazole-based molecular photocatalyst

A. Singh, B. Das and S. Ray, Mater. Adv., 2025, 6, 1667 DOI: 10.1039/D4MA00990H

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements