Issue 2, 2025

SIGMAP: an explainable artificial intelligence tool for SIGMA-1 receptor affinity prediction

Abstract

Developing sigma-1 receptor (S1R) modulators is considered a valuable therapeutic strategy to counteract neurodegeneration, cancer progression, and viral infections, including COVID-19. In this context, in silico tools capable of accurately predicting S1R affinity are highly desirable. Herein, we present a panel of 25 classifiers trained on a curated dataset of high-quality bioactivity data of small molecules, experimentally tested as potential S1R modulators. All data were extracted from ChEMBL v33, and the models were built using five different fingerprints and machine-learning algorithms. Remarkably, most of the developed classifiers demonstrated good predictive performance. The best-performing model, which achieved an AUC of 0.90, was developed using the support vector machine algorithm with Morgan fingerprints. To provide additional, user-friendly information for medicinal chemists in the rational design of S1R modulators, two independent explainable artificial intelligence (XAI) approaches were employed, namely Shapley Additive exPlanations (SHAP) and Contrastive Explanation. The top-performing model is accessible through a user-friendly web platform, SIGMAP (https://www.ba.ic.cnr.it/softwareic/sigmap/), specifically developed for this purpose. With its intuitive interface, robust predictive power, and implemented XAI approaches, SIGMAP serves as a valuable tool for the rational design of new and more effective S1R modulators.

Graphical abstract: SIGMAP: an explainable artificial intelligence tool for SIGMA-1 receptor affinity prediction

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Research Article
Submitted
13 Sep 2024
Accepted
03 Nov 2024
First published
08 Nov 2024
This article is Open Access
Creative Commons BY license

RSC Med. Chem., 2025,16, 835-848

SIGMAP: an explainable artificial intelligence tool for SIGMA-1 receptor affinity prediction

M. C. Lomuscio, N. Corriero, V. Nanna, A. Piccinno, M. Saviano, R. Lanzilotti, C. Abate, D. Alberga and G. F. Mangiatordi, RSC Med. Chem., 2025, 16, 835 DOI: 10.1039/D4MD00722K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements