Wireframe DNA origami nanostructure with the controlled opening of edges
Abstract
Wireframe DNA origami nanostructures present significant potential for a variety of applications in nanotechnology, primarily due to their straightforward design and construction processes. The precise control afforded by these nanostructures renders them exceptionally suitable for executing specific tasks. This study introduces innovative designs by altering short strands (staples) in wireframe DNA origami nanostructures, leading to different behaviors at human body temperature. These behaviors include the selective opening of certain parts of the structure while keeping other parts closed. Our research demonstrates that wireframe DNA origami nanostructures, with their numerous edges, can be engineered to allow selective opening of specific edges. This capability facilitates precise control over the structural configuration, enabling designers to customize these nanostructures to fulfill specific functional requirements. Consequently, the use of these controllable nanostructures opens up new avenues for developing nanorobots. By leveraging the unique properties of wireframe DNA origami, this study paves the way for advancements in the field of nanotechnology, particularly in the creation of versatile and adaptable nanoscale devices.