Magnetic polarons reach a hundred thousand Bohr magnetons†
Abstract
The ability of light to manipulate fundamental interactions in a medium is central to research in optomagnetism and applications in electronics. A prospective approach is to create composite quasiparticles, magnetic polarons, highly susceptible to external stimuli. To control magnetic and transport properties by weak magnetic and electric fields, it is important to find materials that support photoinduced magnetic polarons with colossal net magnetic moments. Here, we demonstrate that magnetic polarons with a record-high magnetic moment, reaching and exceeding a hundred thousand Bohr magnetons, can be optically generated in EuO, an archetypal ferromagnetic semiconductor. The phenomenon is established employing the photoinduced Faraday effect studied in EuO films by a two-color pump–probe technique. The giant magnetic polarons are generated just above the Curie temperature once EuO is exposed to photons of an energy exceeding the bandgap. Picosecond temporal dynamics of magnetic polarons follows relaxation processes in the spin-split 5d conduction band occupied by the photoexcited electron. The study is expected to provide a platform for implementation of an efficient optical control over the magnetic state in solids.