Issue 1, 2025

Charge-switchable zwitterionic nanomagnets for wastewater remediation

Abstract

Enormous amounts of toxic synthetic dyes and inorganic contaminants, such as heavy metals, are regularly discharged into local water bodies unregulated and untreated through effluents from a wide range of industries. Designing industrial methodologies that limit or eliminate the unloading of harmful substances in the surrounding environment has become a requisite for sustainable growth. Although the magnetic separation-based adsorption technique seems quite promising, the functional moieties on the nanoparticle surface often restrict the choice of target pollutants, limiting their universal applicability. Here, we explore the utility of a zwitterion-coated magnetic adsorbent for the easy separation of both positively and negatively charged contaminants from water. Water-dispersible monodispersed nitrilotriacetic acid-functionalized superparamagnetic iron oxide nanoparticles (NTA@SPIONs) were prepared on a large scale following a simple one-pot route. The zwitterionic nanoparticles exhibit surface charge reversibility with a change in pH. The charge-switching property of the nanomaterial was exploited for the removal of cationic and anionic contaminants, such as dyes and heavy metal ions. By proper tuning of the medium pH, methylene blue (MB), a cationic dye, and Congo red (CR), a benzidine-based anionic azo dye, were separated from the aqueous dispersion with the help of the NTA@SPIONs. Under the same working principle, chromium, a highly toxic heavy metal both in cationic and anionic form, was successfully separated from the contaminated water. Low-gradient magnetic separation makes the process rapid, easy, and efficient, and also avoids the chances of secondary pollution.

Graphical abstract: Charge-switchable zwitterionic nanomagnets for wastewater remediation

Supplementary files

Article information

Article type
Paper
Submitted
01 Sep 2024
Accepted
21 Nov 2024
First published
21 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025,7, 329-335

Charge-switchable zwitterionic nanomagnets for wastewater remediation

S. Reja and S. Vasudevan, Nanoscale Adv., 2025, 7, 329 DOI: 10.1039/D4NA00730A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements