Issue 3, 2025

Targeted NIR-triggered doxorubicin release using carbon dots–poly(ethylene glycol)–folate conjugates for breast cancer treatment

Abstract

Carbon dot (CD)-based theranostics offers a promising approach for breast cancer (BC) treatment, integrating ultra-localized chemo-photothermal effects to address chemoresistance and enhance therapeutic control. Herein, the development of a targeted theranostic nanosystem for the chemo-phototherapy of breast cancer is described. Fluorescent and biocompatible CDs were passivated with 1,2-bis(3-aminopropylamino)ethane (bAPAE) and decorated with the targeting agent folic acid (FA) through conjugation with a PEG spacer. This yielded CDs-bAPAE-PEG-FA, hydrophilic nanocarriers (12 nm) with a high drug interaction surface. Fluorescence analysis confirmed their utility as bioimaging probes, while NIR light stimulation demonstrated good photothermal conversion. Doxorubicin-loaded CDs (CDs-bAPAE-PEG-FA/Dox) showed an on-demand NIR-boosted drug release, increased by 50% after localized NIR exposure, while in vitro studies on BC cells MCF-7 and MDA-MB-231 demonstrated NIR-enhanced antitumor efficacy, providing the opportunity to realize selective and remote-controlled synergistic therapy. Furthermore, uptake investigations highlighted the imaging potential of CDs and efficient internalization of doxorubicin, emphasizing FA's role in receptor-mediated specific targeting. Data suggest that CDs-bAPAE-PEG-FA/Dox could perform efficient image-guided and selective BC therapy, enhancing the therapeutic outcomes.

Graphical abstract: Targeted NIR-triggered doxorubicin release using carbon dots–poly(ethylene glycol)–folate conjugates for breast cancer treatment

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2024
Accepted
08 Dec 2024
First published
11 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025,7, 862-875

Targeted NIR-triggered doxorubicin release using carbon dots–poly(ethylene glycol)–folate conjugates for breast cancer treatment

P. Varvarà, N. Mauro and G. Cavallaro, Nanoscale Adv., 2025, 7, 862 DOI: 10.1039/D4NA00834K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements