Issue 5, 2025

Tetrahedral DNA framework-directed hybridization chain reaction controlled self-assembly

Abstract

Nonenzymatic isothermal nucleic acid self-assembly techniques (e.g., the hybridization chain reaction, HCR) hold potential in building materials and biological sensing. However, a traditional HCR is triggered by the random diffusion and disordered conformations of ssDNA initiators, resulting in asynchronous initiation and inherently highly heterogeneous products that do not meet the standards of well-defined nanomaterials. Herein, we developed a nanomechanical restricted strategy directed by tetrahedral DNA frameworks (TDFs) to control HCR self-assembly. We found that the restricted initiator at TDF vertices could induce DNA hairpin assembly to form homogeneous products in solution. Mechanistically, we found that TDFs accelerated the strand displacement rate of the starting H1 and synchronized the assembly process of the HCR. Furthermore, the TDF exhibited strict vertex specificity for HCR controllable assembly, and side extension of the initiator could not result in homogeneous products. This work presents a straightforward and efficient approach for controlling the living self-assembly of macromolecular DNA, thus providing a novel tool for HCR-based nanomanufacturing and quantitative sensing applications.

Graphical abstract: Tetrahedral DNA framework-directed hybridization chain reaction controlled self-assembly

Supplementary files

Article information

Article type
Communication
Submitted
05 Nov 2024
Accepted
17 Jan 2025
First published
21 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2025,7, 1272-1275

Tetrahedral DNA framework-directed hybridization chain reaction controlled self-assembly

D. He, P. Wei, L. Li, P. Fu, J. Zheng and K. Wang, Nanoscale Adv., 2025, 7, 1272 DOI: 10.1039/D4NA00912F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements