Issue 2, 2025

Unraveling energetics and states of adsorbing oxygen species with MoS2 for modulated work function

Abstract

MoS2 and related transition metal dichalcogenides (TMDs) have recently been reported as having extensive applications in nanoelectronics and catalysis because of their unique physical and chemical properties. However, one practical challenge for MoS2-based applications arises from the easiness of oxygen contamination, which is likely to degrade performance. To this end, understanding the states and related energetics of adsorbed oxygen is critical. Herein, we identify various states of oxygen species adsorbed on the MoS2 surface with first-principles calculations. We reveal a “dissociative” mechanism through which a physisorbed oxygen molecule trapped at a sulfur vacancy can split into two chemisorbed oxygen atoms, namely a top-anchoring oxygen and a substituting oxygen, both of which show no adsorbate induced states in the bandgap. The electron and hole masses show an asymmetric effect in response to oxygen species with the hole mass being more sensitive to oxygen content due to a strong hybridization of oxygen states in the valence band edge of MoS2. Alteration of oxygen content allows modulation of the work function up to 0.5 eV, enabling reduced Schottky barriers in MoS2/metal contact. These results show that oxygen doping on MoS2 is a promising method for sulfur vacancy healing, carrier mass controlling, contact resistance reduction, and anchoring of surface electron dopants. Our study suggests that tuning the chemical composition of oxygen is viable for modulating the electronic properties of MoS2 and likely other chalcogen-incorporated TMDs, which offers promise for new optoelectronic applications.

Graphical abstract: Unraveling energetics and states of adsorbing oxygen species with MoS2 for modulated work function

Supplementary files

Article information

Article type
Communication
Submitted
03 Sep 2024
Accepted
06 Nov 2024
First published
06 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Nanoscale Horiz., 2025,10, 359-368

Unraveling energetics and states of adsorbing oxygen species with MoS2 for modulated work function

H. Yan, H. Chen, X. Cui, Q. Guan, B. Wang and Y. Cai, Nanoscale Horiz., 2025, 10, 359 DOI: 10.1039/D4NH00441H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements