Issue 6, 2025

DC field-biased multibit/analog artificial synapse featuring an additional degree of freedom for performance tuning

Abstract

Multibit/analog artificial synapses are in demand for neuromorphic computing systems. A problem hindering the utilization of memristive artificial synapses in commercial neuromorphic systems is the rigidity of their functional parameters, plasticity in particular. Here, we report fabricating polycrystalline rutile-based memristive memory segments with Ti/poly-TiO2/Ti structures featuring multibit/analog storage and the first use of a tunable DC-biasing for synaptic plasticity adjustment from short- to long-term. The unbiased device is of short-term plasticity, positive biasing increases the remanence of the recorded events and the device gains long-term plasticity at a specific biasing level determined from the device geometry. The adjustability of the biasing field provides an additional degree of freedom allowing performance tuning; the paired-pulse facilitation index of the device is tuned by the biasing level adjustment providing further functional versatility. An appropriately biased segment provides more than 10 synaptic weight levels linearly depending on the number and duration of the stimulating spikes. The relationship with spike magnitude is exponential. The experimentally determined nonlinearity coefficient of the biased device for 50 potentiating spikes is comparable to the best published data. The spike-timing-dependent plasticity determined experimentally for the biased device in its long-term plasticity mode fits the mathematical relationship developed for biological synapses. Fabricated on a titanium metal foil, the produced memristors are sturdy and flexible making them suitable for wearable and implantable intelligent electronics. Our findings are anticipated to raise the potential of forming artificial synapses out of polycrystalline metal oxide thin films.

Graphical abstract: DC field-biased multibit/analog artificial synapse featuring an additional degree of freedom for performance tuning

Supplementary files

Article information

Article type
Paper
Submitted
23 Aug 2024
Accepted
09 Dec 2024
First published
09 Dec 2024

Nanoscale, 2025,17, 3389-3401

DC field-biased multibit/analog artificial synapse featuring an additional degree of freedom for performance tuning

M. Jabri and F. Hossein-Babaei, Nanoscale, 2025, 17, 3389 DOI: 10.1039/D4NR03464C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements