Issue 1, 2025

Quantifying the polar skyrmion motion barrier in an oxide heterostructure

Abstract

Exotic polar topologies such as polar skyrmions have been widely observed in ferroelectric superlattice systems. The dynamic motion of polar skyrmions under external forces holds promise for applications in advanced electronic devices such as race-track memory. Meanwhile, the polar skyrmion motion has proven to be challenging due to the strong skyrmion–skyrmion interaction and a lack of a mechanism similar to the spin-transfer torque. In this study, we have developed a nudged elastic band (NEB) method to quantify the polar skyrmion motion barrier along a specific trajectory. It is indicated that the skyrmion motion barrier can be significantly reduced with the reduction of the periodicity to 8 uc, due to the large reduction of the skyrmion size. Moreover, this barrier can also be greatly reduced with a small external electric potential. Following the analysis, we further performed phase-field simulation to verify the collective motion of the polar skyrmion. We have demonstrated the collective skyrmion motion by applying a 5 μN mechanical force using a blade-shaped indenter with a periodicity of 8 unit cells, under an external applied voltage of 1.5 V. This study further paves the way for the design of polar skyrmion-based electronic devices.

Graphical abstract: Quantifying the polar skyrmion motion barrier in an oxide heterostructure

Supplementary files

Article information

Article type
Paper
Submitted
09 Sep 2024
Accepted
12 Nov 2024
First published
12 Nov 2024

Nanoscale, 2025,17, 533-539

Quantifying the polar skyrmion motion barrier in an oxide heterostructure

L. Hu, Y. Huang, Y. Wu and Z. Hong, Nanoscale, 2025, 17, 533 DOI: 10.1039/D4NR03686G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements