Issue 3, 2025

Tuning mucoadhesion and mucopenetration in self-assembled poly(lactic acid)-block-poly(oligoethylene glycol methacrylate) block copolymer nanoparticles by controlling side-chain lengths

Abstract

The capacity to tune the degree of mucoadhesion and mucopenetration of nanoparticles is essential to improving drug bioavailability, transport, and efficacy at mucosal interfaces. Herein, self-assembled nanoparticles (NPs) fabricated from amphiphilic block copolymers of poly(lactic acid) (PLA) and poly(oligo(ethylene glycol) methacrylate) (POEGMA) with various side chain lengths (PLA-POEGMAn) are reported to facilitate tunable mucosal interactions. PLA-POEGMAn nanoparticles with long PEG side chain lengths (n = 20, or 40) demonstrated mucoadhesive properties based on rheological synergism, calorimetric tracking of mucin-nanoparticle interactions, and the formation of larger NP-mucin hybrid structures; in contrast, NPs fabricated from block copolymers with shorter PEG side chains (n = 2/8–9 or n = 8,9) showed poor mucoadhesion but penetrated through the mucin layer with significantly higher permeation rates (>80%). All NP formulations showed good cytocompatibility (viability > 70%) with human corneal epithelial cells in vitro and no detectable acute in vivo ocular irritation in Sprague-Dawley rats. Coupled with the capacity of the synthetic route to easily incorporate different brush lengths and/or different functional groups into the hydrophilic block, we anticipate this approach may offer a solution in applications in which balancing mucoadhesion and mucopenetration is critical for enabling effective drug delivery.

Graphical abstract: Tuning mucoadhesion and mucopenetration in self-assembled poly(lactic acid)-block-poly(oligoethylene glycol methacrylate) block copolymer nanoparticles by controlling side-chain lengths

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2024
Accepted
22 Nov 2024
First published
22 Nov 2024

Nanoscale, 2025,17, 1417-1432

Tuning mucoadhesion and mucopenetration in self-assembled poly(lactic acid)-block-poly(oligoethylene glycol methacrylate) block copolymer nanoparticles by controlling side-chain lengths

R. Dave, J. Mofford, E. A. Hicks, A. Singh, H. Sheardown and T. Hoare, Nanoscale, 2025, 17, 1417 DOI: 10.1039/D4NR03805C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements