Issue 2, 2025

Regulation of the coordination number of Zn single atoms to boost electrochemical sensing of H2O2

Abstract

Compared with transition metals with partially occupied 3d orbitals, Zn has a filled 3d10 configuration, which severely restricts electron mobility and hence usually renders Zn2+ intrinsically inactive for electrochemical sensing. Metal single-atom catalysts are a new kind of sensing material. Owing to their unique coordination structure and high atomic utilization rate, metal single-atom catalysts show unique properties, which makes them promising for use in the field of electrochemical sensing. However, whether Zn single atoms are active sites remains to be elucidated. In this study, we prepared nitrogen-doped carbon (NC) materials by pyrolyzing ZIF-8 at high temperatures and reported that when the pyrolysis temperature was 800 °C, many Zn single atoms with Zn-N4 coordination structures remained in the NC material. Even when the pyrolysis temperature is increased to 1000 °C, a small number of Zn single atoms remain, and the coordination structure changes from Zn-N4 to Zn-N3. Furthermore, unexpectedly, both residual Zn single atoms showed electrocatalytic activity for H2O2 reduction. In particular, the electrocatalytic activity was significantly enhanced after the coordination structure was changed from Zn-N4 to Zn-N3. Density functional theory (DFT) calculations indicate that the coordination structure of Zn-N3 optimizes the adsorption and desorption strength of oxygen-containing species in the electrocatalytic reaction process, which lowers the energy barrier of the rate-determining step and increases the detection sensitivity of H2O2 nearly 4.1 times. This study revealed new properties of Zn single atoms for the electrocatalytic reduction of H2O2 and developed a strategy to increase the electrocatalytic activity of metal single-atom catalysts through coordination number regulation, which lays the foundation for the use of Zn single atoms in the field of electrochemical sensing and provides ideas for the design of new highly active sensing materials.

Graphical abstract: Regulation of the coordination number of Zn single atoms to boost electrochemical sensing of H2O2

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2024
Accepted
24 Nov 2024
First published
28 Nov 2024

Nanoscale, 2025,17, 1069-1079

Regulation of the coordination number of Zn single atoms to boost electrochemical sensing of H2O2

Z. Yang, Y. Kong and C. Qi, Nanoscale, 2025, 17, 1069 DOI: 10.1039/D4NR03815K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements