Issue 3, 2025

Pendant engineering in multiple-resonance thermally activated delayed fluorescence to yield charge-transfer and locally excited-state characteristics

Abstract

Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials can exhibit narrow-spectrum characteristics owing to the inhibition of rotation within the molecules. However, the excited states of these MR-TADF materials, which influence the spin–orbit couplings (SOCs) and device efficiencies of organic light-emitting diodes (OLEDs), have not been investigated to date. In this study, we synthesized MR-TADF materials tDABNA-TP, tDABNA-DN, and tDABNA-DOB by incorporating characteristic neutral, donor, and acceptor pendants into 2,12-di-tert-butyl-5,9-bis(4-(tert-butyl)phenyl)-5,9-dihydro-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene (tDABNA). To determine the effect of pendant engineering, we investigated the excited states of the MR-TADF materials, including their singlet and triplet excited states, calculated the SOCs for their optimal reverse intersystem crossing pathways, and determined their maximum external quantum efficiencies (EQEmax) in OLEDs. The OLED with the emitter bearing the neutral pendant (tDABNA-TP) exhibited the highest EQEmax of 20.7% among those with the emitters bearing the donor (16.6%) and acceptor (12.4%) pendants, with a narrow emission range of 472–492 nm. Furthermore, the device with the tDABNA-TP emitter exhibited an operating lifetime of 196 h, which was 1.42- and 1.92-fold longer than those of the devices with the tDABNA-DN and tDABNA-DOB emitters, respectively. Our findings will promote research on the pendant engineering of MR-TADF-based OLEDs.

Graphical abstract: Pendant engineering in multiple-resonance thermally activated delayed fluorescence to yield charge-transfer and locally excited-state characteristics

Supplementary files

Article information

Article type
Paper
Submitted
27 Sep 2024
Accepted
29 Nov 2024
First published
05 Dec 2024

Nanoscale, 2025,17, 1644-1651

Pendant engineering in multiple-resonance thermally activated delayed fluorescence to yield charge-transfer and locally excited-state characteristics

J. Y. Yoo, T. H. Ha and C. W. Lee, Nanoscale, 2025, 17, 1644 DOI: 10.1039/D4NR03955F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements