A dual-purpose copper(i) coordination polymer for the construction of self-driven photoinduced C–H arylation systems†
Abstract
The simultaneous exploitation of the dual or multiple physical and chemical properties of a material is a promising strategy for developing high-tech intelligent complex systems. In this study, a copper(I) coordination polymer (CuI-CP, 2) was synthesized and utilized as a dual-purpose material to construct a self-powered photocatalytic system capable of significantly improving the power generation capabilities of triboelectric generators (TEGs) as a triboelectric layer and efficiently catalyzing the C–H arylation reaction as a photocatalyst. Compound 2 was achieved via a solvothermal method in the presence of ammonia and ethylenediamine. In contrast, only mixed-valence copper salts ([CuII(H2O)5][CuI3(CN)5]·H2O, 1) were obtained without ammonia and ethylenediamine. Comparative analysis revealed that the TEG based on 2 (2-TEG) showcased superior output performance compared to 1-TEG owing to the exceptional electron-donating ability of 2. Furthermore, under light-emitting diode (LED) irradiation powered by 2-TEG, 2 demonstrated remarkable catalytic activity and selectivity in the photoinduced C–H arylation of benzothiazole, far exceeding the performance of 1. This research highlights the potential of bifunctional material 2 with a distinctive structure, renowned for its outstanding energy harvesting and conversion capabilities as well as excellent photocatalytic performance, thereby facilitating the design objectives of multitasking in self-driven complex systems.