Issue 1, 2025

Preparation of a lanthanum-modified flocculant and its removal performance towards phosphorus and fluoride in yellow phosphorus wastewater

Abstract

Polysilicate-ferric-calcium-lanthanum (PSFCL) was synthesized through a co-polymerization method in order to treat the yellow phosphorus wastewater. Its morphology, composition and functional group were analyzed by X-ray Diffraction (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Scanning Electron Microscopic (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The optimization of the flocculant was also investigated, including La/Si molar ratio, pH, agitation time, dosage and sedimentation time. Results showed that PSFCL has reached an excellent removal efficiency of 95% and 97% towards phosphorus and fluoride, respectively. It could be inferred that charge neutralization, bridging effect and ligand exchange were the main coagulation mechanisms. As a whole, after the introduction of lanthanum, PSFCL was found to be a promising flocculant in yellow phosphorus wastewater treatment owing to its high removal efficiency and simple synthesis route.

Graphical abstract: Preparation of a lanthanum-modified flocculant and its removal performance towards phosphorus and fluoride in yellow phosphorus wastewater

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Oct 2024
Accepted
19 Dec 2024
First published
02 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 48-57

Preparation of a lanthanum-modified flocculant and its removal performance towards phosphorus and fluoride in yellow phosphorus wastewater

B. Li, S. Wen, J. Li, D. He, Y. Luo, X. Zheng and D. Chen, RSC Adv., 2025, 15, 48 DOI: 10.1039/D4RA07237E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements