Selenium-based nanomaterials: green and conventional synthesis methods, applications, and advances in dye degradation
Abstract
The rapidly expanding industrialization and global increase in economic activities have drawn attention to the concerning accumulation of waste. The textile industry plays a significant role in environmental pollution, especially in and water pollution. Harmful dyes used during the fabrication process are mixed with water bodies through sewage or wastewater ejected from industrial factories. These toxic dyes are not only applied in textile industries but also used in other industries like pharmaceutical companies and rubber manufacturing. Therefore, scientists have adopted alternative techniques for the degradation of organic dyes because of eliminating the drawbacks from the traditionally used techniques. Catalytic degradation of organic dyes with the help of a safe and easy nanocatalyst is one of the best alternatives. Accordingly, the use of biomaterials or waste materials offers an easy, cost-effective and eco-friendly approach for the synthesis of such nanocatalysts. Several nanocatalysts have been used for the degradation of dyes present in industrial wastewater. The well-known semi-conductor selenium has several important properties, viz., optoelectronic, photovoltaic, thermoconductivity, and anisotropy, and has drawn significant research attention for its catalytic application in dye degradation. Considering all these points, selenium nanoparticles synthesized via green techniques provide the best possible alternative catalyst for the degradation of organic dyes in industrial wastewater. The current review covers various aspects of the biosynthesis of selenium nanoparticles; their application as a catalyst for the degradation of harmful organic dyes, viz., methylene blue, methyl orange, rhodamine B, alizarin S, malachite green, sunset yellow, fuchsin, safranin T, Congo red, and bromothymol blue; and their mechanism for the degradation process. This review will also shed light on the importance of using green chemistry towards the synthesis of selenium nanoparticles and different biosynthesis procedures and explores all aspects of the interesting catalytic activity towards the dye degradation mechanism. Hence this article will be beneficial to both industrialists and acdemicians bridging the gap between industrial and academic sceintists.
- This article is part of the themed collection: 2025 Reviews in RSC Advances