Issue 4, 2025, Issue in Progress

Metal-free photocatalyst with reduced graphene oxide-doped graphitic carbon nitride homojunctions for efficient antibacterial applications

Abstract

Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability. In this study, a graphitic carbon nitride (g-C3N4) homojunction was synthesized, with reduced graphene oxide (RGO) incorporated to suppress the rapid recombination of photocarriers. The resulting composites demonstrated significantly enhanced photocatalytic antibacterial activity compared to original g-C3N4. The improvement is due to the critical role of RGO, which not only facilitates efficient electron transport but also introduces sharp edges that mechanically disrupt bacterial cell membranes. The experimental results demonstrated that the composite exhibited a bactericidal efficiency of 99.92% against Escherichia coli and 99.85% against Staphylococcus aureus within 180 minutes, highlighting its potential for practical antibacterial applications.

Graphical abstract: Metal-free photocatalyst with reduced graphene oxide-doped graphitic carbon nitride homojunctions for efficient antibacterial applications

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Nov 2024
Accepted
14 Jan 2025
First published
24 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 2444-2451

Metal-free photocatalyst with reduced graphene oxide-doped graphitic carbon nitride homojunctions for efficient antibacterial applications

J. Zhang, W. Wang, S. Huang, Y. Lv, M. Li, M. Wu and H. Wang, RSC Adv., 2025, 15, 2444 DOI: 10.1039/D4RA07829B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements