Issue 8, 2025

Preparation of nanosilver/polymer composites and evaluation of their antimicrobial and antitumor effect

Abstract

In this study, a copolymer (PVA-g-PEG) of polyethylene glycol (PEG) and polyvinyl alcohol (PVA) was synthesized by grafting PEG chains onto PVA backbone. PVA-g-PEG was used as the carrier to prepare the silver nanoparticles/polymer composite (AgNPs/PVA-g-PEG) using a “one-pot” biological method in the presence of grape seeds extract as a reducing and stabilizing agent. In order to highlight the effect of the copolymer, the homo-polymers PVA and PEG were applied as the carriers to prepare the corresponding composites – AgNPs/PVA, and AgNPs/PEG, respectively using the same method. The prepared AgNPs/polymer products were characterized by UV absorption spectroscopy (UV-vis), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the silver ions were successfully reduced by the grade seeds extract and the produced AgNPs are coated on the surface of AgNPs/PVA-g-PEG and AgNPs/PVA, but not for AgNPs/PEG. The prepared AgNPs are uniform and monodisperse, the particle size is small with mean diameter about 25.7 ± 2.3 nm and 54.2 ± 3.4 nm for AgNPs/PVA-g-PEG and AgNPs/PVA, respectively. The AgNPs/polymer composites exhibited superior antimicrobial effects against microorganisms (Escherichia coli and Staphylococcus aureus). AgNPs/PVA-g-PEG demonstrated a better performance than AgNPs/PVA. AgNPs/PVA-g-PEG had a minimum inhibitory concentration (MIC) of 1.3 μg mL−1 and a minimum inhibitory concentration (MBC) of 2.4 μg mL−1 against the microorganisms. For anti-tumor effect, AgNPs/PVA-g-PEG also demonstrated a high cytotoxicity to the colorectal cancerous cells HCT116 and SW620. The IC50 values of AgNPs/PVA-g-PEG for HCT116 and SW620 cell lines were 25.4 and 37.6 μg mL−1, respectively, suggesting a good anticancer activity. All above results indicate that AgNPs/PVA-g-PEG composites have a significant potential for the control of microorganisms and inhibition of cancer cells.

Graphical abstract: Preparation of nanosilver/polymer composites and evaluation of their antimicrobial and antitumor effect

Article information

Article type
Paper
Submitted
15 Nov 2024
Accepted
27 Jan 2025
First published
25 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 6357-6369

Preparation of nanosilver/polymer composites and evaluation of their antimicrobial and antitumor effect

F. Lu, Y. Liu, Y. Dai, G. Zhang and Y. Tong, RSC Adv., 2025, 15, 6357 DOI: 10.1039/D4RA08108K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements