Issue 12, 2025, Issue in Progress

Preparation of CaCl2/MOF-303 composite and its dehumidification properties

Abstract

A series of aluminium based Metal–Organic Framework (Al-MOF) composite adsorbents were prepared by impregnating moisture-sensitive CaCl2 with different relative contents into Al-MOF (MOF-303). The composite adsorbents were characterized by adsorption isotherm of N2, elemental analysis and scanning electron microscopy, and subjected to static and dynamic adsorption tests of water vapor, as well as cyclic adsorption and desorption tests. The results showed that with the addition of CaCl2, the high surface area of MOF-303 granules (1276 m2 g−1) dropped sharply to 588–683 m2 g−1. However, under the synergistic effect of physical adsorption and chemical adsorption, the purification effects of the composite adsorbents were significantly better than those of unmodified MOF-303, molecular sieves, and silica gel. The adsorption performance was correlated with the impregnation amount of CaCl2. As the CaCl2 content increased, the saturation adsorption capacity and breakthrough adsorption capacity of the composite adsorbents all showed a trend of first increasing and subsequently decreasing. The maximum water adsorption capacity of the CaCl2/MOF-303 composite was 1077 mg g−1. In addition, the regenerative rate of the CaCl2/MOF-303 composite was over 96.1% after fifty adsorption and desorption cycles of water, showing good desorption performance and excellent structural stability, which proved a broad application prospect in the field of dehumidification.

Graphical abstract: Preparation of CaCl2/MOF-303 composite and its dehumidification properties

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
22 Nov 2024
Accepted
04 Mar 2025
First published
24 Mar 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 8867-8875

Preparation of CaCl2/MOF-303 composite and its dehumidification properties

Y. Li, J. Li, S. Yin, X. Shan, B. Tao and S. Wang, RSC Adv., 2025, 15, 8867 DOI: 10.1039/D4RA08282F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements