Issue 6, 2025, Issue in Progress

Performance comparison of nano-Al2O3-modified PVDF membranes fabricated via two methods for enhanced dye removal

Abstract

Improving the contamination resistance of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes against organic dyes is essential for efficient dye wastewater treatment. In this work, PVDF membranes were prepared using a phase separation method via two separate processes (one utilizing Al2O3 sol and the other utilizing nano-Al2O3 powder-modified PVDF UF membranes), and their anti-pollution ability and enhanced hydrophilicity were evaluated. The effects of the varying content of Al2O3 nanoparticles on the microstructure of PVDF membrane were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Compared to 1.0 wt% Al2O3 powder, the modification impact of 20% Al2O3 sol on the overall performance of the membrane was superior. It was demonstrated that the pore size and mechanical strength of the modified membranes were notably better than those of the pure PVDF membrane and the water flux also increased from 148.80 L m−2 h−1 to 217.00 L m−2 h−1. An efficient and economical membrane separation method was essential for the treatment of dye wastewater, and the dye filtration experiments revealed that the filtration and antifouling properties of the modified PVDF membranes were significantly improved. The retention rate of Al2O3/PVDF-modified membranes for neutral red 5 (NR 5) and dispersed navy blue 79 (DB 79) was more than 96%. After three filtration cycles, the recovery rates of NR 5, DB 79, and bovine serum albumin (BSA) flux were 94.67%, 92.54%, and 95.55%, respectively. These results show that the Al2O3/PVDF-modified membranes can cope with more complex wastewater treatment environments.

Graphical abstract: Performance comparison of nano-Al2O3-modified PVDF membranes fabricated via two methods for enhanced dye removal

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2024
Accepted
24 Jan 2025
First published
07 Feb 2025
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2025,15, 4163-4172

Performance comparison of nano-Al2O3-modified PVDF membranes fabricated via two methods for enhanced dye removal

R. Liu, J. Yang, R. Zhang, H. Li and R. Mu, RSC Adv., 2025, 15, 4163 DOI: 10.1039/D4RA08615E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements