Issue 2, 2025

Efficient construction of high-quality sulfonated porous aromatic frameworks by optimizing the swelling state of porous structures

Abstract

Conventional post-modification methods usually face the fundamental challenge of balancing the high content of functional groups and large surface area for porous organic polymers (POPs). The reason, presumably, stems from ineffective and insufficient swelling of the porous structure of POP materials, which is detrimental to mass transfer and modification of functional groups, especially with large-sized ones. It is important to note that significant differences exist in the porous structures of POP materials in a solvent-free state after thermal activation and solvent swelling state. Herein, we propose that the improvement of the swelling state of the porous structure of POP materials is more conducive to obtaining high-quality sulfonated POP materials, and employ a one-pot modification strategy for preparing sulfonated porous aromatic frameworks (PAFs) to prove the proposal. These results show that the specific surface area of the resulting polymer is 580 m2 g−1 with a sulfur content of up to 13.2 wt%, which is superior to most sulfonated porous materials and the control sample. More importantly, we have also shown that the same conclusion is reached by performing similar treatments on hyper-crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs), proving that our hypothesis is effective and feasible when compared to the conventional post-sulfonation method. The excellent hydrophilicity, rich content of sulfonic acid groups, high specific surface area and hierarchical pore structure make the resulting polymer an ideal adsorbent for micro-pollutants in water. The maximum adsorption capacities for Rhodamine B (RhB), Methylene Blue (MB), Tetracycline (TC) and Ciprofloxacin (CIP) are 1075 mg g−1, 1020 mg g−1, 826 mg g−1 and 1134 mg g−1, respectively. This study not only demonstrates the preparation of efficient sulfonated porous adsorbents for the efficient removal of cationic dyes and antibiotics but also illustrates an effective method for constructing high-quality functional POP materials by optimizing the swelling state of the porous structure.

Graphical abstract: Efficient construction of high-quality sulfonated porous aromatic frameworks by optimizing the swelling state of porous structures

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
08 Aug 2024
Accepted
26 Nov 2024
First published
27 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 775-783

Efficient construction of high-quality sulfonated porous aromatic frameworks by optimizing the swelling state of porous structures

L. Yang, Z. Zhan, L. Zhao, C. Zhang, S. Wang, W. Hu and G. Zhu, Chem. Sci., 2025, 16, 775 DOI: 10.1039/D4SC05329J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements