Issue 1, 2025

H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe

Abstract

The equilibrium of lipid metabolism is critical to sustaining human health. Metabolic disorders often result in a variety of cardiovascular illnesses, especially atherosclerosis. Atherosclerosis is characterized by complicated complications and high mortality. Cholesterol deposition and oxidative stress have been considered as critical mechanisms in the occurrence and progression of atherosclerosis, however, the relationship between oxidative stress and lipid accumulation remains a puzzle in foam cells during the early stages of atherosclerosis development. Hydrogen peroxide (H2O2) has been reported to participate in various signaling pathways associated with atherosclerotic diseases. Additionally, the excessive intake of oxidized low-density lipoprotein (ox-LDL) leads to cholesterol accumulation and viscosity increasing in foam cells. Therefore, it is critical to investigate the internalization and modification of ox-LDL by H2O2 in foam cells. Herein, we developed a near-infrared, synergistic dual-functional fluorescent probe capable of detecting H2O2 and viscosity simultaneously with high selectivity and sensitivity. Through in situ imaging of H2O2 and viscosity in vivo, we discovered that H2O2 accumulation leads to an increased intake of ox-LDL in the early stages of plaque formation. This finding establishes a new experimental approach and theoretical foundation for the diagnosis and treatment of atherosclerosis, as well as the development of new medications.

Graphical abstract: H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe

Supplementary files

Article information

Article type
Edge Article
Submitted
19 Aug 2024
Accepted
16 Nov 2024
First published
23 Nov 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 345-353

H2O2 accumulation promoting internalization of ox-LDL in early atherosclerosis revealed via a synergistic dual-functional NIR fluorescence probe

H. Wang, J. Guo, T. Xiu, Y. Tang, P. Li, W. Zhang, W. Zhang and B. Tang, Chem. Sci., 2025, 16, 345 DOI: 10.1039/D4SC05546B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements