Issue 3, 2025

CO2-broken Ti–O bonds in the TiO6 octahedron of CaTiO3 for greatly enhanced room-temperature ferromagnetism

Abstract

Preparation of two-dimensional (2D) ferromagnetic nanomaterials and the study of their magnetic sources are crucial for the exploration of new materials with multiple applications. Herein, two-dimensional room-temperature ferromagnetic (FM) CaTiO3 nanosheets are successfully constructed with the assistance of supercritical carbon dioxide (SC CO2). In this process, the SC CO2-induced strain effect can lead to lattice expansion and introduction of O vacancies. More importantly, experimentally it can be found out that the breakage of the Ti–O2 bond by CO2 directly results in the equatorial plane of the TiO6 octahedron being exposed. This leads to more opportunities for oxygen vacancies and low-valent titanium to appear, where Ti3+ can optimize the spin structure, releasing the macroscopic magnetization. Greatly improved room-temperature ferromagnetic behavior, with an optimal magnetization of 0.1661 emu g−1 and a high Curie temperature (Tc) of 300 K can be achieved.

Graphical abstract: CO2-broken Ti–O bonds in the TiO6 octahedron of CaTiO3 for greatly enhanced room-temperature ferromagnetism

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
21 Aug 2024
Accepted
10 Dec 2024
First published
11 Dec 2024
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 1336-1343

CO2-broken Ti–O bonds in the TiO6 octahedron of CaTiO3 for greatly enhanced room-temperature ferromagnetism

Y. Ouyang, B. Gao, Y. Tang, L. Li and Q. Xu, Chem. Sci., 2025, 16, 1336 DOI: 10.1039/D4SC05607H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements