A dual experimental–theoretical perspective on ESPT photoacids and their challenges ahead†
Abstract
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective. Besides explicating the spectral signatures, transient ion-pair species, and electronic states involved in an ESPT, special emphasis is put on the diversity of methods used for studying photoacids as well as on the effects of the environment on the ESPT, illustrated in detail for 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and the naphthols as examples of prototypical photoacids. The development of exceptionally acidic super-photoacids and magic photoacids is subsequently discussed, which opens the way to applications even in aprotic solvents and provides additional insight into the mechanisms underlying ESPT. In the overview of highlights from theory, a comprehensive picture of the scope of studies on HPTS is presented, along with the general conceptualization of the electronic structure of photoacids and approaches for the quantification of excited-state acidity. We conclude with a juxtaposition of established applications of photoacids together with potential open questions and prospective research directions.
- This article is part of the themed collection: 2025 Chemical Science Perspective & Review Collection