Issue 9, 2025

Noble-metal-free catalysts for the oxygen evolution reaction in acids

Abstract

Oxygen evolution catalysts are critical components of proton exchange membrane water electrolysers (PEMWEs), playing a decisive role in determining both the performance and cost of these devices. Non-noble metal-based oxygen evolution catalysts have recently drawn significant attention as potential alternatives to expensive noble metal catalysts. This review systematically summarizes the mechanism of non-noble metal catalysts for the oxygen evolution reaction in acids with respect to their activity and stability, incorporating theoretical calculations and the Pourbaix diagram. Advanced in situ techniques are highlighted as powerful tools for probing intermediate evolution and valence changes and further elucidating the catalytic mechanism. Furthermore, key strategies for enhancing catalytic activity and durability, such as elemental doping, the support effect, surface protection and novel phase design, are discussed. Finally, this review provides insights into the remaining challenges and emerging opportunities for advancing practical oxygen evolution catalysts in PEMWEs.

Graphical abstract: Noble-metal-free catalysts for the oxygen evolution reaction in acids

Article information

Article type
Review Article
Submitted
11 Dec 2024
Accepted
05 Feb 2025
First published
05 Feb 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 3788-3809

Noble-metal-free catalysts for the oxygen evolution reaction in acids

J. Han, Q. Liu, Y. Yang and H. B. Wu, Chem. Sci., 2025, 16, 3788 DOI: 10.1039/D4SC08400D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements