Issue 16, 2025

Rigorous treatment of polytopal rearrangements reveal surprising complexity of stereoisomerism configuration landscapes

Abstract

Previously we posited that a systematic and general description of stereoisomerism could be based upon the principles of the polytopal rearrangement model. The most daunting challenge to this end is to comprehensively describe all possible geometries for arbitrary n-coordinate centres, ABn, and for this we have developed a physically-inspired rigorous approach. Here we demonstrate the detailed application of this approach to the AB4 system focussing on e-symmetric distortions of tetrahedral geometry to generate an angular configuration space (the AB4T-4 E-mode space). Analytic expressions for the A–Bi unit vector configurations are presented and the resulting spherical (2D) configuration space is shown to exhibit the symmetries of a disdyakis dodecahedron. Detailed inspection and analysis of the angular configuration space reveals that, in addition to the expected (T-4-R) ⇌ (T-4-S) pseudorotation, it features numerous “orientation permutations” that are also pseudorotations. Through the worked examples of SiF4, XeF4, and a chiral silane, we generate the corresponding potential energy surfaces and examine the wider implications. We also outline experimental opportunities for investigating the unexpected configuration space complexity that this work has revealed. This rigorous and mathematically comprehensive approach and framework is part of the Polytope Formalism of isomerism and molecular structure.

Graphical abstract: Rigorous treatment of polytopal rearrangements reveal surprising complexity of stereoisomerism configuration landscapes

Supplementary files

Article information

Article type
Edge Article
Submitted
21 Dec 2024
Accepted
13 Mar 2025
First published
18 Mar 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 6705-6719

Rigorous treatment of polytopal rearrangements reveal surprising complexity of stereoisomerism configuration landscapes

P. J. Canfield and M. J. Crossley, Chem. Sci., 2025, 16, 6705 DOI: 10.1039/D4SC08628G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements