Issue 9, 2025

Orthologous mammalian A3A-mediated single-nucleotide resolution sequencing of DNA epigenetic modification 5-hydroxymethylcytosine

Abstract

Epigenetic modifications in genomes play a crucial role in regulating gene expression in mammals. Among these modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are recognized as the fifth and sixth nucleobases in genomes, respectively, and are the two most significant epigenetic marks in mammals. 5hmC serves as both an intermediate in active DNA demethylation and a stable epigenetic modification involved in various biological processes. Analyzing the location of 5hmC is essential for understanding its functions. In this study, we introduce an orthologous mammalian A3A-mediated sequencing (OMA-seq) method for the quantitative detection of 5hmC in genomic DNA at single-nucleotide resolution. OMA-seq relies on the deamination properties of two naturally occurring mammalian A3A proteins: green monkey A3A (gmA3A) and dog A3A (dogA3A). The combined use of gmA3A and dogA3A effectively deaminates cytosine (C) and 5mC, but not 5hmC. As a result, the original C and 5mC in DNA are deaminated and read as thymine (T) during sequencing, while the original 5hmC remains unchanged and is read as C. Consequently, the remaining C in the sequence indicates the presence of original 5hmC. Using OMA-seq, we successfully quantified 5hmC in genomic DNA from lung cancer tissue and corresponding normal tissue. OMA-seq enables accurate and quantitative mapping of 5hmC at single-nucleotide resolution, utilizing a pioneering single-step deamination protocol that leverages the high specificity of natural deaminases. This approach eliminates the need for bisulfite conversion, DNA glycosylation, chemical oxidation, or screening of engineered protein variants, thereby streamlining the analysis of 5hmC. The utilization of orthologous enzymes for 5hmC detection expands the toolkit for epigenetic research, enabling the precise mapping of modified nucleosides and uncovering new insights into epigenetic regulation.

Graphical abstract: Orthologous mammalian A3A-mediated single-nucleotide resolution sequencing of DNA epigenetic modification 5-hydroxymethylcytosine

Supplementary files

Article information

Article type
Edge Article
Submitted
23 Dec 2024
Accepted
23 Jan 2025
First published
28 Jan 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025,16, 3953-3963

Orthologous mammalian A3A-mediated single-nucleotide resolution sequencing of DNA epigenetic modification 5-hydroxymethylcytosine

X. Guo, J. Wu, T. Ji, M. Wang, S. Zhang, J. Xiong, F. Gang, W. Liu, Y. Gu, Y. Liu, N. Xie and B. Yuan, Chem. Sci., 2025, 16, 3953 DOI: 10.1039/D4SC08660K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements