Issue 1, 2025

Cooperating with additives: low-cost hole-transporting materials for improved stability of perovskite solar cells

Abstract

The widespread adoption of perovskite-based solar technologies is strictly related to the cost reduction of the hole-transporting component in the device, while maintaining compatibility with its absorbing active layer. To date, several organic systems have been developed to compete with the pioneering 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (Spiro-OMeTAD) used as the benchmarking hole-transporting material (HTM). However, an easily accessible platform to construct economically competitive HTM scaffolds as alternatives to Spiro-OMeTAD is still lacking. In this study, we propose a straightforward route (excluding organometallic cross-coupling reactions) to prepare nonconventional HTMs (BTF and BTC) based on a bithiophene core decorated with unsymmetrical triarylamine groups. The two HTMs are implemented in dopant-free n-i-p perovskite solar cells (PSCs) to evaluate their performance and long-term behaviour. Despite enhancing hole extraction and transport at the perovskite/HTM interface compared to the Spiro-OMeTAD benchmark, BTC does not perform exceptionally as an undoped HTM in PSCs (PCE = 14.0% vs. 16.5% of the doped Spiro-OMeTAD reference). Moreover, the efficiencies of unencapsulated devices rapidly degraded over time (T80: ∼57 days) due to weak HTM adhesion at the perovskite interface. Conversely, using tert-butylpyridine as the sole additive slightly increases performance (PCE = 14.8%) and remarkably improves device resilience to ambient exposure (PCE = 15.4% after 401 days), representing one of the longest shelf-stability experiments ever reported. Other dopant/additive formulations are unproductive in terms of both efficiencies and device resistance. These results indicate that focusing on the molecular design of low-cost HTMs and investigating the appropriate HTM/additive systems can be a promising strategy for developing efficient and stable PSCs.

Graphical abstract: Cooperating with additives: low-cost hole-transporting materials for improved stability of perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
30 Sep 2024
Accepted
19 Nov 2024
First published
20 Nov 2024

Sustainable Energy Fuels, 2025,9, 172-184

Cooperating with additives: low-cost hole-transporting materials for improved stability of perovskite solar cells

P. Mäkinen, D. Conelli, G. K. Grandhi, G. P. Suranna, P. Vivo and R. Grisorio, Sustainable Energy Fuels, 2025, 9, 172 DOI: 10.1039/D4SE01356E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements