Issue 4, 2025

Solvothermal synthesis of carbon nitride (g-C3N4): bandgap engineering for improved photocatalytic performance

Abstract

Graphitic carbon nitride (g-C3N4) is a metal-free semiconductor material with highly promising photocatalytic properties owing to its unique structural, electronic, and optical characteristics. Herein, the solvothermal synthesis of g-C3N4 as a photocatalyst for photoelectrochemical water splitting and the photocatalytic degradation of organic pollutants is reported. The solvothermal synthesis of g-C3N4 was carried out using acetonitrile as the solvent at three different temperatures: 160 °C, 180 °C and 200 °C. The chemical structure of the synthesized photocatalysts was characterized using NMR, FT-IR, and Raman spectroscopy. Phase purity was confirmed through X-ray diffraction (XRD), and the morphology was analyzed using transmission electron microscopy (TEM). The optical properties were accessed using UV-visible and diffuse reflectance spectroscopy (DRS). The prepared photocatalysts were tested for photoelectrochemical (PEC) water splitting and the photocatalytic degradation of organic pollutants, with methylene blue used as a model compound. It was observed that the g-C3N4 synthesized at 200 °C showed an enhanced anodic photocurrent of ∼25 μA cm−2 at an applied potential of 1.7 V vs. RHE under exposure to 100 mW cm−2, AM 1.5 G. Additionally, it exhibited superior performance in the photocatalytic degradation of organic pollutants, with methylene blue as the model compound. The enhanced photoelectrochemical and photocatalytic performance of the g-C3N4 synthesized at 200 °C is likely attributed to the improved physicochemical properties of the material, which are linked to its structural features modified by the elevated synthesis temperature.

Graphical abstract: Solvothermal synthesis of carbon nitride (g-C3N4): bandgap engineering for improved photocatalytic performance

Supplementary files

Article information

Article type
Paper
Submitted
24 Nov 2024
Accepted
24 Dec 2024
First published
27 Dec 2024

Sustainable Energy Fuels, 2025,9, 1109-1119

Solvothermal synthesis of carbon nitride (g-C3N4): bandgap engineering for improved photocatalytic performance

M. T. Abdullahi, M. Ali, W. Farooq, M. Khan, M. Younas and M. N. Tahir, Sustainable Energy Fuels, 2025, 9, 1109 DOI: 10.1039/D4SE01646G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements