Improvement of performance to form syngas utilizing water and CO2 over a particulate-Cu0.8Ag0.2GaS2-based photocathode by surface co-modification with ZnS and Ag†
Abstract
Surface of a particulate-Cu0.8Ag0.2GaS2-based photocathode was co-modified with ZnS and Ag, resulting in improvement in the performance of the Cu0.8Ag0.2GaS2 photocathode for syngas (H2 + CO) formation through photoelectrochemical H2O and CO2 reduction under visible light in an aqueous electrolyte. Bubbles of the syngas were visually observed over the developed Ag and ZnS-co-modified Cu0.8Ag0.2GaS2 photocathode at 0 V vs. RHE at the applied potential using a 300 W Xe-arc lamp (λ > 420 nm). Based on various control experiments and characterization studies, the following two crucial factors have arisen: (1) formation of a (ZnS)–(Cu0.8Ag0.2GaS2) solid-solution near the surface of Cu0.8Ag0.2GaS2 particles was vital for enhancing the separation of the photogenerated carriers, (2) the Ag cocatalyst loaded on the solid-solution worked as an active site for photoelectrochemical CO2 reduction. Moreover, artificial photosynthetic syngas formation using water as an electron donor under simulated sunlight without any external bias was demonstrated by combining the developed Ag/ZnS/Cu0.8Ag0.2GaS2 photocathode with a CoOx-loaded BiVO4 photoanode.
- This article is part of the themed collection: Recent Open Access Articles