Issue 4, 2025

Gradients in cell density and shape transitions drive collective cell migration into confining environments

Abstract

Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in a system of contiguous microchannels of varying confinements, we show that epithelial (MCF10A) monolayers accumulate higher cell density and undergo fluid-like shape transitions before entering narrower channels. However, overexpression of breast cancer oncogene ErbB2 did not require such accumulation of cell density to migrate across matrix confinement. While wild-type MCF10A cells migrated faster in narrow channels, this confinement sensitivity was reduced after +ErbB2 mutation or with constitutively active RhoA. This physical interpretation of collective cell migration as density and shape transitions in granular matter could advance our understanding of complex living systems.

Graphical abstract: Gradients in cell density and shape transitions drive collective cell migration into confining environments

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2023
Accepted
27 Dec 2024
First published
30 Dec 2024
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 719-728

Gradients in cell density and shape transitions drive collective cell migration into confining environments

W. Lin, H. Yu and A. Pathak, Soft Matter, 2025, 21, 719 DOI: 10.1039/D3SM01240A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements