Issue 4, 2025

Light scattering study of algal floc growth and structure: alum vs. polymeric plant-derived flocculant

Abstract

The flocculation dynamics of Microcystis aeruginosa algal cultures using alum and aqueous Moringa oleifera seed extracts as flocculants were analyzed through light scattering and fractal analysis. Floc growth in continuously stirred M. aeruginosa suspensions, with cell densities ranging from 200 to 800 μg L−1 chlorophyll a (Chl a), exhibited distinct patterns in fractal dimension (dF) evolution relative to floc size: a smooth, monotonic increase; stochastic increase; and stabilization or leveling off. dF values ranged from 1.3 to 2.6, with floc diameters (D4,3 volume-weighted mean) spanning 30 to 300 μm. Alum (0.1 to 0.4 g L−1) induced fast diffusion-limited flocculation, initially producing lower dF values, which progressively increased due to structural rearrangement at a slower rate. In contrast, at sufficiently high concentrations (0.1 to 0.2 g L−1 BSA equivalent), M. oleifera seed proteins facilitated stable, high dF ≈ 2.0 early on, evidently through patch charge interactions. Flocs formed with alum were prone to shear-induced breakage, limiting both their size and stability, whereas M. oleifera extract produced larger, more stable flocs with greater resilience to shear due to robust particle network formation by the polymer. Both flocculants effectively treated 800 μg L−1 Chl a M. aeruginosa suspensions, but M. oleifera extract demonstrated better performance in terms of floc size at similar mass concentrations. These findings highlight the potential of Moringa seed extract as a sustainable and effective alternative to conventional flocculants like alum, offering insights into their mechanisms and performance in flocculation processes.

Graphical abstract: Light scattering study of algal floc growth and structure: alum vs. polymeric plant-derived flocculant

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2024
Accepted
24 Oct 2024
First published
25 Oct 2024

Soft Matter, 2025,21, 561-572

Light scattering study of algal floc growth and structure: alum vs. polymeric plant-derived flocculant

T. Orimolade, N. Le, L. Trimble, B. Ramarao and S. Krishnan, Soft Matter, 2025, 21, 561 DOI: 10.1039/D4SM00837E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements