Nanocarriers for intracellular delivery of molecular payloads triggered by visible light†
Abstract
Stimuli-responsive nanocontainers have emerged as promising vehicles to deliver molecular payloads into the cytosol of cells in a spatially, temporally and dosage-controlled manner. These nanocontainers respond to a specific type of stimulus such as a change in redox status, enzymatic activity, pH, heat, light, and others. In this work, we introduce photoresponsive nanocontainers based on the self-assembly of vesicles with surface-confined cyclodextrin–adamantane host–guest chemistry. The nanocontainer surface is protected by a polymer shell with a tetrazine cross-linker that enables triggered delivery of payloads upon exposure to green light (515 nm). We show that the release of vesicle-encapsulated payload is achieved also in cells by visible light, which is less harmful than the UV-light responsive release reported previously for in vitro systems.