Issue 8, 2025

Physical scaling for predicting shear viscosity and memory effects of lithium-ion battery cathode slurries

Abstract

Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging. In this study, we conducted simultaneous rheo-electric measurements on 3 wt% CB suspensions in N-methyl-2-pyrrolidone containing various loadings of active material NMC811 and polyvinylidene difluoride. Accounting for the changes in the infinite shear viscosity, the yield stress, and the medium viscosity due to the presence of NMC and polymers, we defined the differential relative viscosity. This differential relative viscosity, Δηr, is a measure of the distance from the infinite shear rate, where carbon black agglomerates are fully broken down. We find that Δηr collapses all flow curves regardless of formulation with an empirical relationship Δηr = 2.18Mn−0.92f, indicating a quantitative prediction of the flow curve of cathode slurries across a wide range of formulation space. We then used electrical conductivity to identify and quantify shear-induced structure memory, evidenced in the ratio of the under-shear conductivity over the post-shear quiescent conductivity. We find that similar to the changes in the yield stress, increasing NMC concentration increases memory retention, and in contrast, the addition of PVDF erases memory effects. Our findings here will provide valuable insight into engineering the formulation and processing conditions of lithium-ion battery cathodes.

Graphical abstract: Physical scaling for predicting shear viscosity and memory effects of lithium-ion battery cathode slurries

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
16 Dec 2024
Accepted
22 Jan 2025
First published
22 Jan 2025
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2025,21, 1489-1497

Physical scaling for predicting shear viscosity and memory effects of lithium-ion battery cathode slurries

Y. Gupta, Q. Liu and J. J. Richards, Soft Matter, 2025, 21, 1489 DOI: 10.1039/D4SM01493F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements