Issue 3, 2025

Reduction behaviors of tin oxides and oxyhydroxides during electrochemical reduction of carbon dioxide in an aqueous solution under neutral conditions

Abstract

It is well known that tin oxides and oxyhydroxides show high selectivity for the electrochemical CO2 reduction reaction (CO2RR) to form HCOOH in aqueous solutions. Tin oxides and oxyhydroxides are reduced to form metallic Sn during the CO2RR, and the formed interface between the oxide and metallic Sn plays important roles in the CO2RR. In this study, reduction behaviors of tin oxides and oxyhydroxide during the CO2RR were investigated. SnO, SnO2 and tin oxyhydroxide containing both amorphous and crystalline phases were formed using solvothermal, sol–gel and precipitation methods, respectively. Reduction current densities of SnO2 and the oxyhydroxide for the CO2RR and hydrogen evolution reaction at −0.8 V vs. RHE were higher than that of SnO, and the faradaic efficiency of the oxyhydroxides for formation of HCOOH and CO was >90%. Based on high-resolution TEM observation and EDS mappings, it was revealed that metallic Sn nanoparticles with a ∼40 nm diameter were formed from SnO2 and tin oxyhydroxides during the CO2RR via a dissolution and reductive deposition process. Aggregates of SnO2 and the oxyhydroxide were dissolved in a neutral electrolyte solution during the CO2RR, and subsequently, metallic Sn nanoparticles with highly effective surface areas were formed on carbon electrodes via reductive deposition from dissolved Sn cations, leading to a higher reduction current. The thickness of native oxide layers formed on the surface of the metallic Sn particles in air after the CO2RR from the oxyhydroxide was greater than those of SnO and SnO2. Therefore, it is speculated that metallic surfaces of the former ones were more easily formed at the interface between SnOx and metallic Sn than those of the latter ones, leading to high selectivity for the CO2RR.

Graphical abstract: Reduction behaviors of tin oxides and oxyhydroxides during electrochemical reduction of carbon dioxide in an aqueous solution under neutral conditions

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Aug 2024
Accepted
17 Jan 2025
First published
17 Jan 2025
This article is Open Access
Creative Commons BY-NC license

RSC Sustain., 2025,3, 1388-1396

Reduction behaviors of tin oxides and oxyhydroxides during electrochemical reduction of carbon dioxide in an aqueous solution under neutral conditions

E. Tsuji, K. Ohwan, T. Ishikawa, Y. Hirata, H. Okada, S. Suganuma and N. Katada, RSC Sustain., 2025, 3, 1388 DOI: 10.1039/D4SU00476K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements