Electrocatalytic microdevices based on transition metal dichalcogenides for hydrogen evolution
Abstract
Chemical reactions and electronic properties are two vital aspects in the systematic study of electrocatalytic reactions. However, current studies focus more on chemistry than on electronics, which limits the comprehensive study of electrocatalytic reaction mechanisms and activity optimization of catalysts. In this case, electrocatalytic microdevice platforms integrating microcells and field-effect transistors have great advantages in the structure–activity relationship elucidation of active sites on electrocatalysts owing to their superiorities in in situ chemical and electric signal monitoring. Here, starting from the introduction of the configuration and advantages of microdevices as a uniform platform, we comprehensively summarized their electric parameters and electronic metrics associated with the catalytic activity of transition metal dichalcogenide (TMD)-based catalysts for the hydrogen evolution reaction (HER). Besides, the dynamic identification, external field regulation, and self-gating modulation of the electrocatalytic process achieved by electrocatalytic microdevices are comprehensively discussed. Finally, by highlighting the challenges and shortcomings of electrocatalytic microdevices, we provide insightful perspectives toward device-oriented methodologies for future endeavors.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles