Issue 7, 2025

Tyrosine-modified tilapia skin antioxidant peptides and their hydroxyl radical quenching activities

Abstract

In an antioxidant peptide study, the number and position of active amino acid sites, as well as the peptides’ conformation, are found to be crucial for scavenging hydroxyl radicals (˙OH). Herein, ˙the OH scavenging activity of tilapia pentapeptide (P1, YGDQY) and its analogs including P2 (YYYGDQY), P3 (YYGDQYY) and P4 (YYGPDQYY) was investigated. The results showed that the tyrosine's amount, location and the peptides’ conformation played important roles in determining peptides’ scavenging activity (34.1 ± 0.8%, 45.1 ± 0.9%, 58.6 ± 1.3% and 48.4 ± 0.96% for P1, P2, P3, and P4, respectively). Density functional theory simulation showed that only the tyrosine sites located within the effective diffusion distance Image ID:d4tb02200a-t1.gif of ˙OH could scavenge the radical. The peptides did not cause cytotoxicity in Caco-2 cells. And the peptide-treated group could increase the activities of glutathione peroxidase (GSH-PX), catalase (CAT) and superoxide dismutase (SOD), and reduced malondialdehyde (MDA) levels. This work may contribute to designing more active antioxidant peptides based on natural peptides’ analogs.

Graphical abstract: Tyrosine-modified tilapia skin antioxidant peptides and their hydroxyl radical quenching activities

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
01 Oct 2024
Accepted
23 Dec 2024
First published
30 Dec 2024

J. Mater. Chem. B, 2025,13, 2400-2408

Tyrosine-modified tilapia skin antioxidant peptides and their hydroxyl radical quenching activities

Y. Wang, R. Jiu, Z. Li, Q. Wang, X. Lei, J. Chen, H. Liu and J. Liu, J. Mater. Chem. B, 2025, 13, 2400 DOI: 10.1039/D4TB02200A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements